Allosteric interactions required for high-affinity binding of dihydropyridine antagonists to Ca(V)1.1 Channels are modulated by calcium in the pore.

نویسندگان

  • Blaise Z Peterson
  • William A Catterall
چکیده

Dihydropyridines (DHPs) are an important class of drugs, used extensively in the treatment of angina pectoris, hypertension, and arrhythmia. The molecular mechanism by which DHPs modulate Ca(2+) channel function is not known in detail. We have found that DHP binding is allosterically coupled to Ca(2+) binding to the selectivity filter of the skeletal muscle Ca(2+) channel Ca(V)1.1, which initiates excitation-contraction coupling and conducts L-type Ca(2+) currents. Increasing Ca(2+) concentrations from approximately 10 nM to 1 mM causes the DHP receptor site to shift from a low-affinity state to a high-affinity state with an EC(50) for Ca(2+) of 300 nM. Substituting each of the four negatively charged glutamate residues that form the ion selectivity filter with neutral glutamine or positively charged lysine residues results in mutant channels whose DHP binding affinities are decreased up to 10-fold and are up to 150-fold less sensitive to Ca(2+) than wild-type channels. Analysis of mutations of amino acid residues adjacent to the selectivity filter led to identification of Phe-1013 and Tyr-1021, whose mutation causes substantial changes in DHP binding. Thermo-dynamic mutant cycle analysis of these mutants demonstrates that Phe-1013 and Tyr-1021 are energetically coupled when a single Ca(2+) ion is bound to the channel pore. We propose that DHP binding stabilizes a nonconducting state containing a single Ca(2+) ion in the pore through which Phe-1013 and Tyr-1021 are energetically coupled. The selectivity filter in this energetically coupled high-affinity state is blocked by bound Ca(2+), which is responsible for the high-affinity inhibition of Ca(2+) channels by DHP antagonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms.

The L-type calcium channel (LTCC) isoforms Ca(v)1.2 and Ca(v)1.3 display similar 1,4-dihydropyridine (DHP) binding properties and are both expressed in mammalian brain. Recent work implicates Ca(v)1.3 channels as interesting drug targets, but no isoform-selective modulators exist. It is also unknown to what extent Ca(v)1.1 and Ca(v)1.4 contribute to L-type-specific DHP binding activity in brain...

متن کامل

Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis.

The dihydropyridine Ca2+ antagonist drugs used in the therapy of cardiovacular disorders inhibit L-type Ca2+ channels by binding to a single high affinity site. Photoaffinity labeling and analysis of mutant Ca2+ channels implicate the IIIS6 and IVS6 segments in high affinity binding. The amino acid residues that are required for high affinity binding of dihydropyridine Ca2+ channel antagonists ...

متن کامل

Anti-dihydropyridine Antibodies Exhibit [H]Nitrendipine Binding Properties Similar to the Membrane Receptor for the 1,4-Dihydropyridine Ca Channel Antagonists

The [H]nitrendipine binding properties of antidihydropyridine antibodies were characterized and compared with the known [H]nitrendipine binding properties of the membrane receptor for the 1,4-dihydropyridine Ca channel antagonists. Immunization of rabbits with dihydropyridine-protein conjugates resulted in the production of antibodies with high affinity and specificity for the 1,4-dihydropyridi...

متن کامل

Modulation of cardiac Ca(V)1.2 channels by dihydropyridine and phosphatase inhibitor requires Ser-1142 in the domain III pore loop.

Dihydropyridine-sensitive, voltage-activated calcium channels respond to membrane depolarization with two distinct modes of activity: short bursts of very short openings (mode 1) or repetitive openings of much longer duration (mode 2). Here we show that both the dihydropyridine, BayK8644 (BayK), and the inhibitor of SerThr protein phosphatases, okadaic acid, have identical effects on the gating...

متن کامل

Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors.

Benzodiazepines (BDZs) depress neuronal excitability via positive allosteric modulation of inhibitory GABA(A) receptors (GABA(A)R). BDZs and other positive GABA(A)R modulators, including barbiturates, ethanol, and neurosteroids, can also inhibit L-type voltage-gated calcium channels (L-VGCCs), which could contribute to reduced neuronal excitability. Because neuronal L-VGCC function is up-regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 70 2  شماره 

صفحات  -

تاریخ انتشار 2006